To be the best in the world!

A JIN GROUP INTRODUCTION

AJIN INDUSTRIAL CO.,LTD.

531, Shinje-Ri, Jinryang-eup, Gyung San-City, Gyungsangbuk-Do, Korea TEL: +82-53-856-9100 / FAX: +82-53-856-9111

000 | Contents

- 1. Company Introduction
- 2. Main Production
- 3. Main Clients
- 4. R&D Center & Status
- 5. CFRP
- 6. Aluminum

001 | Company Introduction

Brief Company History I

History

- 1987 year.
- Establishment of WOOSHIN INDUSTRIAL
- 2000~2006 year.
- 2003.12 Acquisition of AJIN INDUSTRIAL
- 2006,09 Establishment of AJIN INDUSTRIAL(SHANGHAI)
- 2008~2009 year.
- 2009.03 Establishment of AJIN USA (Alabama, U.S.)
- 2009.12 Acquisition of DAEWOO ECC.
- O 2010년~CURRENT
- 2011.02 Acquisition of KCO Energy

(The company name was changed into AJIN Car In Tech)

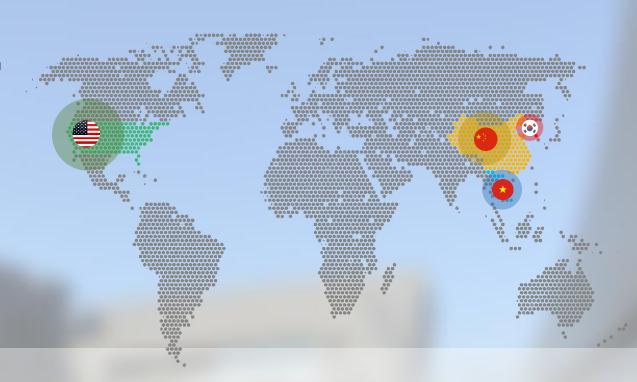
- 2011.09 Acquisition of EMPITECH USA

(The company name was changed into WOOSHIN USA / Alabama, U.S.)

- 2011.12 To confirm investment for Ajin ind. (Yancheng)
 (Scheduled date for corporation registration: December, 2012 / Yancheng, China)
- 2013.08 New construction of AJIN INDUSTRIAL Head office

(August, 2013 / Gyeongsan-si, Gyeongbuk)

Awards

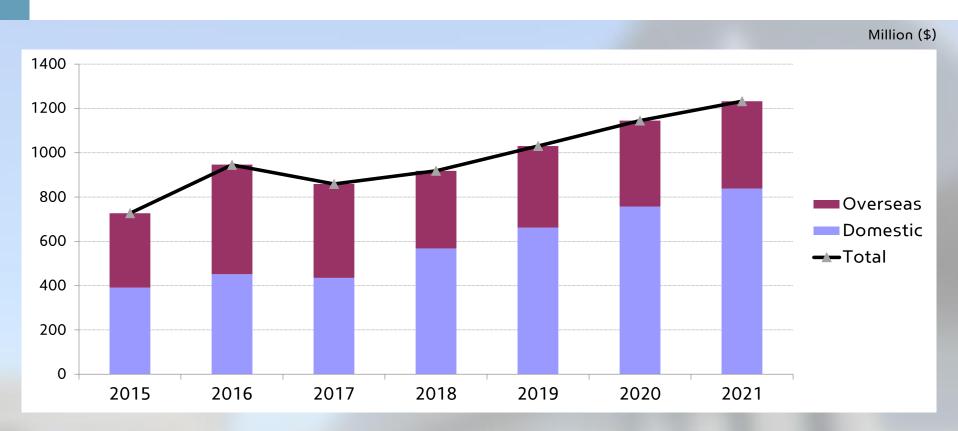

- 2006.12 Gyungbuk Small Business Award
- 2009.10 Selected as Most Wanted Corporation to work for Labor-Management Cooperation Division Awarded at Productivity Competition
- 2009.10 Selected as a Best Productivity Enhancement / Innovation Activities Corporation
- 2010.07 Obtained Safety/Health Management System Certification (Korea Occupational Safety & Health Agency/DNV)
- **2010.09** National Productivity Award Prime Minister Commendation (Ministry of Knowledge Economy)
- 2010.09 Best Human Resources Developer: Best-HRD Certificate (Human Resources Development of Korea, Ministry of Employment and Labor)
- 2011.07 No Injury Records in 13 Years
 (Korea Occupational Safety & Health Agency)
- 2011.12 Chosen 2011 Labor and Management Partner Supporting Project (Ministry of Employment and Labor)
- 2012.02 Best Organization for Specialized High School Global on-Site Training (Ministry of Education and Science Technology Minister Award)
- 2012.05 Open Hire Leader
 (Ministry of Employment and Labor Minister Award)
- 2012.12 Obtained Export Award (One Hundred Million Dollar)
- 2013.05 Received AEO certification for outstanding general certification company (Korea Customs Service) (Grade A)
- **2013.12** Presidential certification for contributions in creating jobs
- 2015.07 Selected organization in The World Class 300
- 2015.10 Awarded a grand prize of FTA Practical use
- 2016.12 The prize of "Admired business man, the future leader"

Company Introduction

Group Introduction

- USA
- AJIN USA
- WOOSHIN USA
- CHINA
- AJIN ind. [SHANGHAI]
- AJIN ind. [YANCHENG]
- SHUZHOU A&T TECH

- VIETNAM
- DAEWOO VIETNAM
- KOREA
- AJIN ind.
- WOOSHIN ind.
- AJIN Car In Tech
- DAEWOO ECC.
- Pinetron



To become a world-class auto parts company!

AJIN Industrial Co., Ltd., spreading throughout the world, will do our best for customer satisfaction with global management strategies, extending automobile parts manufacturing subsidiaries overseas.

Company Introduction

Long-term Sales Goal

Classification	2015	2016	2017	2018	2019	2020	2021	Remark
Domestic sales	391	451	435	568	662	757	838	
Overseas sales	336	494	424	350	368	388	394	
Total	727	945	859	918	1,030	1,145	1,232	

Company Introduction

Overview

AJIN INDUTRIAL

HEAD office

Establishment: August, 2013

Location: Gyeongsan-si, Gyeongbuk

Area: Land 33,000m² / Building: 25,000m²

Staff numbers: 500 people

Sales: 327 million dollar (Sales projections for 2018)

Main Product: QTR COMPL, COWL COMPL, RR FLR COMPL,

DASH COMPL, SIDE COMPL

AJIN INDUTRIAL

Establishment: April, 1976

Location: Gyeongsan-si, Gyeongbuk

Area: Land 17,000m² / Building: 11,000m²

Staff numbers: 200 people

Sales: Included in Head office's sales

Main Product: QTR INR, DASH, SIDE OTR, COWL, F/APRON, FEM MBR

Company Introduction

Overview

AJIN Car In Tech

Establishment: July, 1959

Location: Gyeongju-si, Gyeongbuk

Area: Land 28,000m² / Building: 10,000m² [Geuncheun Fac.]

Land 8,000m² / Building: 5,000m² [Mohwa Fac.]

Staff numbers: 130people

Sales: 106 million dollar (Sales projections for 2018)

Main Product: RR P/TRAY CTR, BACK COMPL, QTR INR UPR, SD COMPL,

RR FLRRR FLR COMPL, QTR COMPL, SIDE COMPL

WOOSHIN

Establishment: March, 1987

Location: Gyeongsan-si, Gyeongbuk **Area**: Land 6,600m² / Building: 5,800m²

Staff numbers: 160 people

Sales: 47 million dollar (Sales projections for 2018)

Main Product: AIR BAG PARTS, ABS/ESP PARTS, MDPS BRKT

Company Introduction

Overview

AJIN USA

Establishment: February, 2008

Location: Alabama, U.S

Area: Land 264,000m² / Building: 50,000m²

Staff numbers: 620 people

Sales: 252 million dollar (Sales projections for 2018)

Main Product: F/APRON & MBR COMPL, SIDE COMPL, DASH COMPL,

COWL COMPL, T/GATE, QTR COMPL

WOOSHIN USA

Establishment: February, 2008

Location : Alabama, U.S

Area: Land 110,000m² / Building: 14,000m²

Staff numbers: 254 people

Sales: 55 million dollar (Sales projections for 2018)

Main Product: RR COMBI LAMP HOUSING, EXTN QTR INR RR LWR,

PNL Sub assembly parts

001 | Company Introduction

Overview

AJIN INDUSTRIAL (YANCHENG)

Establishment: January, 2013 **Location**: Yancheng, China

Area: Land 78,000m² / Building: 39,000m²

Staff numbers: 138people

Sales: 15 million dollar (Sales projections for 2018)

Main Product:: RR COMBI LAMP HOUSING, ROOF,

PNL FEM, Sub assembly parts

AJIN INDUSTRIAL(SHANGHAI)

Establishment: February, 2008

Location: Shanghai, China

Area: Land 49,000m2 / Building: 27,000m2

Staff numbers: 155 people

Sales: 11 million dollar (Sales projections for 2018)

Main Product :: Air bag parts, ABS/ESP Parts, Seat belt parts,

Steering parts

Company Introduction

Overview

DAEWOO ECC.

Establishment: Octorber, 1973 **Location**: Jeongeup-si, Jeonbuk

Area: Land 150,000m² / Building: 56,000m²

Staff numbers: 185people

Sales: 69 million dollar (Sales projections for 2018)

Main Product: ECC(PWM, OBD, REGULATOR, ACU)

DAEWOO VIETNAM

Establishment: May, 1995

Location: Tan Dinh Viliage Ben Cat Disrict Binh Duong

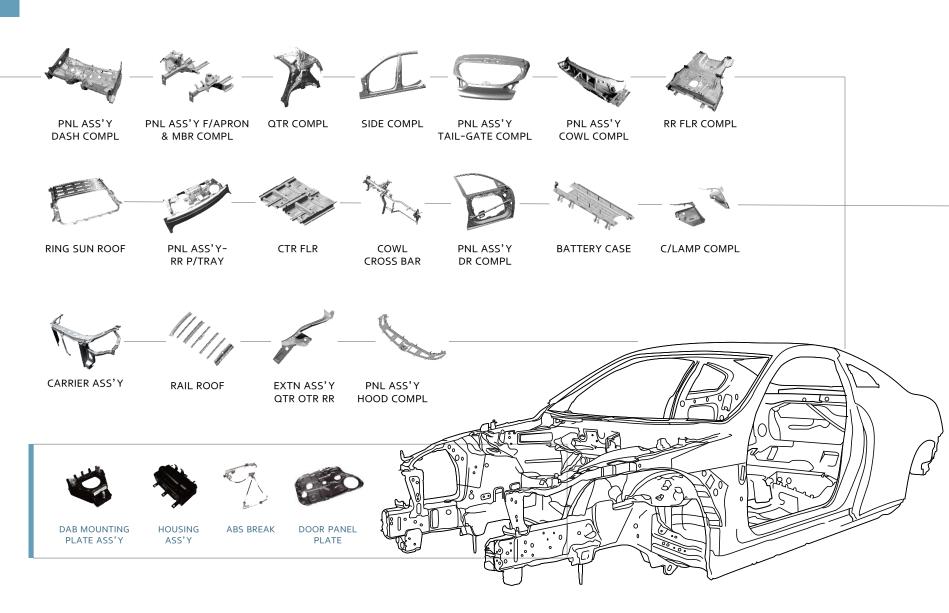
Privince S.R. Vietnam

Area: Land 33,000m² / Building: 18,000m²

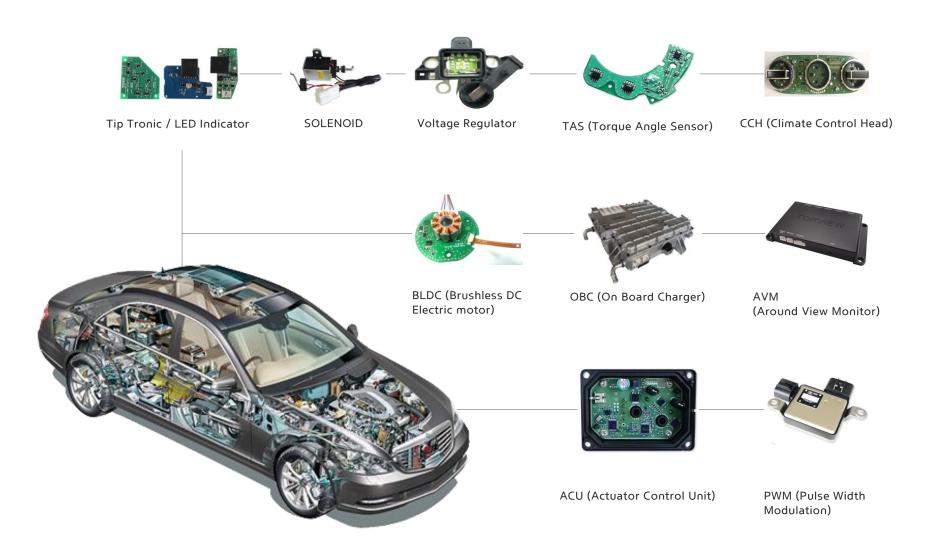
Staff numbers: 130people

Sales: 18 million dollar (Sales projections for 2018)

Main Product : Parts of ECC(CONDENSOR)


Company Introduction

Affiliated Company


002 | Main Production I

Car Body Product Line

002 | Main Production II

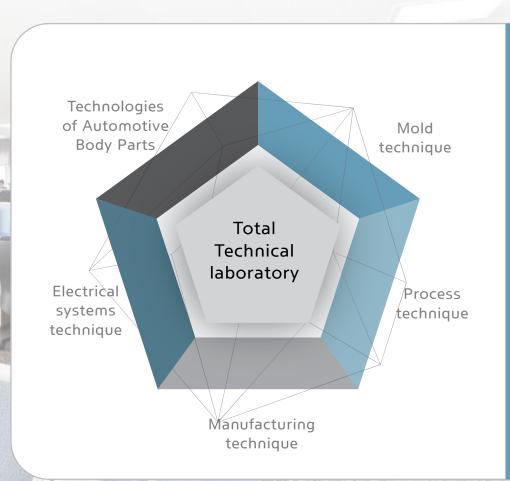
Automotive Parts Product Line

003 | Main Clients

Customer

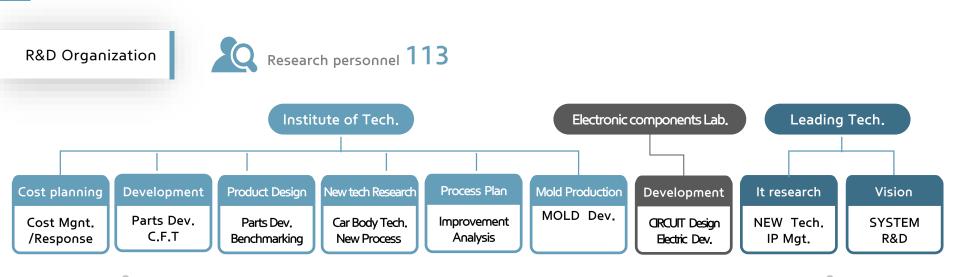
004 R&D Center

R&D Center


Since AJIN R & D Center was established, our group has achieved impressive results through the effective Task Force. AJIN R & D Center holds more than 150 patents, carries out a variety of government tasks, and actively engages in industry-academic cooperation activities.

Establishment: March 24, 2001

Number of Personnel: 113


Purpose:

- Innovative process development
- Next generation Auto Resource Development
- Secure Source Technology
- Secure Convergence Technology

R&D Status

R&D Center

Intellectual Property Securing Status

Patents 150

Parts	Main Development Contents
BODY	 Development of Vehicle Lightweight Body Parts Tech. using magnesium ally laminate Development of a Laser Assist Roller Hemming System for Magnesium Plate Parts
П	 Development of Vehicle Component Inspection System using Vision System Development of Around View System for Multi-View Function
ELECTRIC DEVICE	Development of Electronic Vehicle Air Suspension ECU Controller

Development of Vehicle Weight Reduction

CFRP

PURPOSE

Development of A-PLR CFRP REINF INSERT for small overlap test

SUMMARY

- Reduction car body weight
- Parts and weld reduction through integrated design
- Weight Reduction by applying CFRP material
- High Rigidity Body Structure
- Reinforce local stiffness of A-PLR for small overlap test

STEEL

CFRP

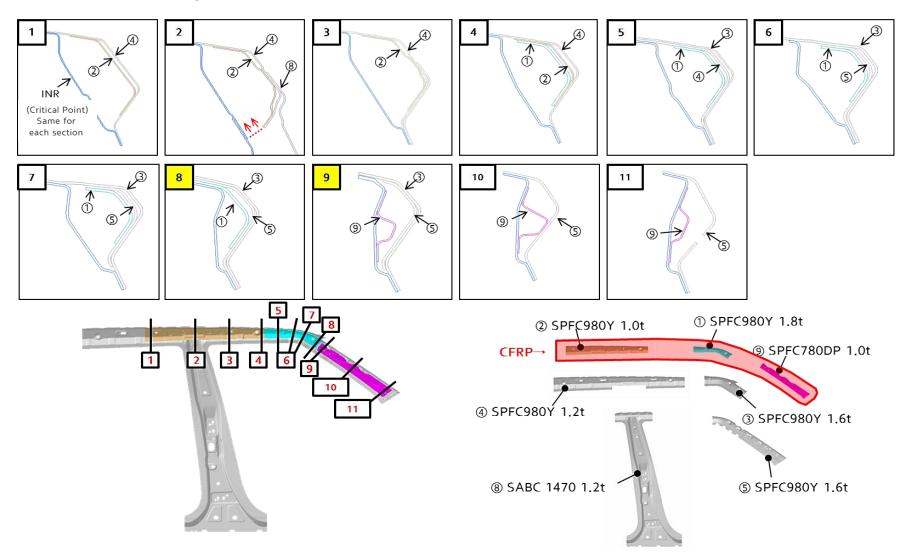
CONTENTS

[Development Purpose] CFRP REINF INSERT - No. of parts: 3 part → 1part - Weight: 2.8kg/Unit (↓ 26.3%) - Method: ppg. Oven, Braiding, RTM - Material: Braiding textile, UD prepreg

[Achievement]

CFRP REINF INSERT

- No. of parts: 3 part \rightarrow 1part
- Weight: 2.68kg/Unit (↓29.4%)
- Method: ppg. Press, Braiding, RTM
- Material: 12K textile, UD prepreg



Result of small overlap test simulation Securing equivalent property to steel

Development of Vehicle Weight Reduction

CFRP

■ Steel Parts Configuration Section

Development of Vehicle Weight Reduction

CFRP

Design Concept

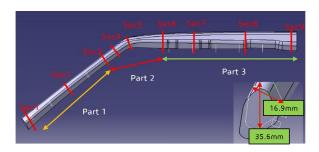
		Co	ncept 1	Co	oncept 2	Со	ncept 3		
	Current Specifications	Max. allowable section	Braiding + UD textile	Max. allowable section	Braiding + UD ppg	Max. allowable section	Braiding + UD ppg		
Concept Drawing									
Weight (kg)/unit	3.8	+0.	4.6 8 (+21%)	-1.	2.6 .2 (-32%)	1.1	2.7 (-29%)		
No. of Parts/unit	6	4			4		4		
Materials	SPFC 980Y : 4EA SPFC 780DP : 2EA		UD textile: 2EA Braiding textile: 2EA				ppg:2EA g textile:2EA		ppg:2EA ı textile:2EA
No. of tools/ Method	-		1 RTM		2 forming, RTM	Internal pr	2 essure forming, RTM		
Advantages	-	1. Reduce the no. of process			duce the weight ng adhesive surface idity	1. Constant s forming and p	ection -> Better process		
Dis- advantages	-	1. Poor weigh difficult in sec	reduction due to uring rigidity	1. Increasing n	o. of process -> Increasing Cost		et for securing ace -> Increasing		

Development of Vehicle Weight Reduction

CFRP

■ CFRP lamination design through single part analysis

- Optimization condition:
 - Equivalent stiffness (displacement) and safety factor 105%
 - 1) Safety rate calculation: Tsai-wu (FPF factor=0.95)
 - 2) CFRP density: 1.49 g/cm³ (Vf=57%/52%)
- Result: Secure formable design \Rightarrow Require 7t (Thick.) in Part 2
 - \Rightarrow Moldable design \Rightarrow Predictable and weight reduction
- Weight review result


Current part weight	CFRP weight
1.9kg	1.47kg (77.4%)

Optimization using the maximum thickness for each part

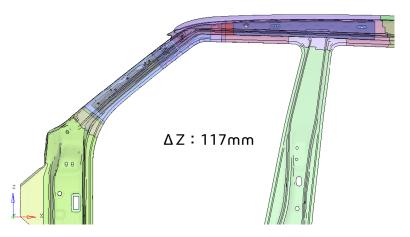
ı	٧
' '	٧

Max. Thickness

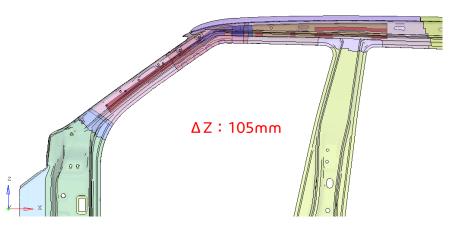
	SEC. No.	1	2	3	4	5	6	7	8	9
	Braiding Thick. (mm)	1.0	1.0	1.0	1.0	2.9	3.6	2.3	5.2	3.0
Part1	PPg Thick. (mm)	0.1	0.1	0.1	0.1	0.7	0.4	0.2	1.7	1.8
	PART 1 T. Thick (mm)	1.1	1.1	1.1	1.1	3.6	4.0	2.5	6.9	4.8
	Braiding Thick. (mm)	1.0	1.0	1.0	1.0	1.6	7.4	3.1	6.6	3.8
Part2	PPg Thick. (mm)	0.1	0.1	0.1	0.1	0.23	0.13	0.18	0.76	0.77
	PART 2 T. Thick (mm)	1.1	1.1	1.1	1.1	1.8	7.5	3.3	7.4	4.6
	Braiding Thick. (mm)	1.0	1.0	1.0	1.0	1.2	1.6	1.3	3.4	2.7
Part3	PPg Thick. (mm)	0.1	0.1	0.1	0.1	0.16	0.13	0.1	0.27	0.27
	PART 3 T. Thick (mm)	1.1	1.1	1.1	1.1	1.4	1.7	1.4	3.7	3.0

[Braiding+ PPg Reinforcement]

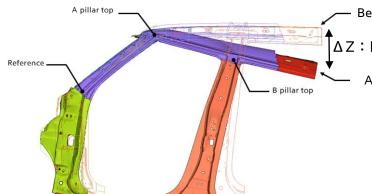
Derive moldable design


Sec.	Braid (mm)	PPg (mm)	SUM (mm)
1	5	2(0°)	7
2	5	2(0°)	7
3	5	2(0°)	7
4	5	2(±45°)	7
5	5	2(±45°)	7
6	5	2(±45°)	7
7	3.5	0	3.5
8	3.5	0	3.5
9	3.5	0	3.5

Development of Vehicle Weight Reduction


CFRP

Crash Analysis

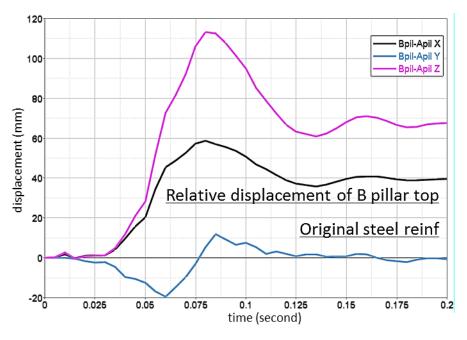

Result: Z:\2015_0713_Ajin_PS_composite_Apillar\Warking\base_section_force_out_fin_reinf_onlybase_girtd3plot Loadcase 1 : Time = 0.000000 Frame 1 Model info: PS SOL
Result: \\ueew-1403\Ho_Kin\CFRP_reinf_ver2_1\base2_qt\d3plot
Loadcase 1 : Time = 0.00000
Frame 1

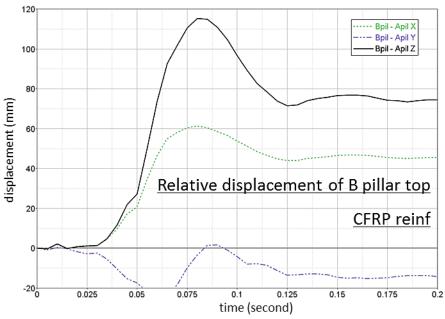
CFRP inner reinf.

Before collision

∆Z: Displacement

After collision


- Measure displacement of A pillar top and B pillar top with reference plane.
- The relative displacement of the B pillar top is measured by subtracting the displacement of the A pillar top from the displacement of the B pillar top.


Development of Vehicle Weight Reduction

CFRP

Crash Analysis

- Compare the performance of the steel reinforced part and CFRP specifications.
- Two results shows almost same behavior based on comparisons of displacements of the B pillar top with the hinge pillars

Development of Vehicle Weight Reduction

CFRP

Adhesive Test Evaluation

▶ Shear bond strength test result

N O.	Adhesive Type	Room temperature (20~25°C, 24h) [MPa]	After heating (210°C, 30min) [MPa]
1	Hysol E-60HP (Henkel)	6.0	17.2
2	Pliogrip 5760B (Ashland)	11.1	13.6
3	Araldite 2011 (Huntsman)	6.6	9.4
4	Plexus AO420 (ITW)	6.8	4.6
5	Duralco 4525 (COTRONICS)	2.7	5.0
6	Adhesive D type (MS-750-60)	N/A	8.2

► Corrosion resistance test result

순 번	Adhesive Type	Before	After
1	Hysol E- 60HP (Henkel)	Henkel Hysol E-60HP	Henkel Hysol E-60HP
2	Pliogrip 5760B (Ashland)	Ashland Pliogrip 5760B	Ashland Pliogrip 5760

Development of Vehicle Weight Reduction

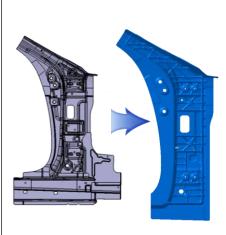
CFRP

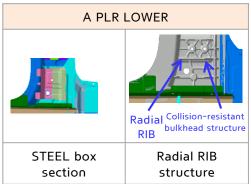
■ Drop-top Test

	Test evaluation side	Ste	eel	CF	RP
	Test evaluation side	Before Test	After Test	Before Test	After Test
Test condition	-	Test load (Free	d : 400kg e fall)	Test load (Free	d: 800kg e fall)
lmage	Impact direction Cutting test side				

Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting


PURPOSE


Developing the same level of integrated aluminum die-casting A-PLR as Steel.

SUMMARY

- Reduction car body weight
- Parts and weld reduction through integrated design
- Weight Reduction by applying aluminum ally
- High Rigidity Body Structure
- Securing body rigidity and increasing collision energy absorption efficiency through application of Rib structure

CONTENTS

	Radial RIB
STEEL box section	Radial RIB structure

A PLR UPPER

Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting

■ Required Properties for Aluminum Applied A-PLR

	Ste	eel	AL		
Material	SABC	1470	Silafont36		
Property	Yield Strength (MPa)	Elongation (%)	Yield Strength (MPa)	Elongation (%)	
	1000	6%↑	200 ↑ (Highest level)	6%↑	

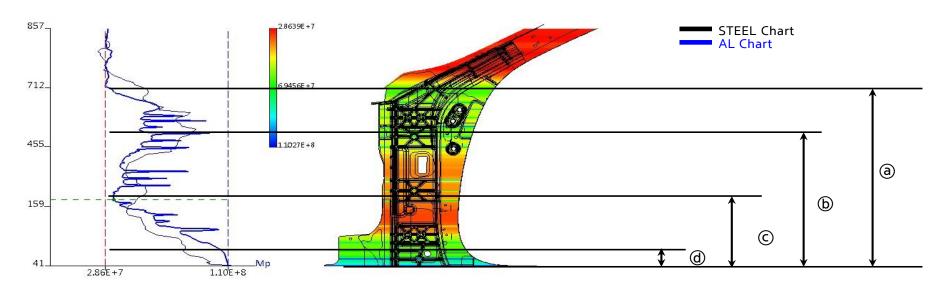
SABC1470 1.2t

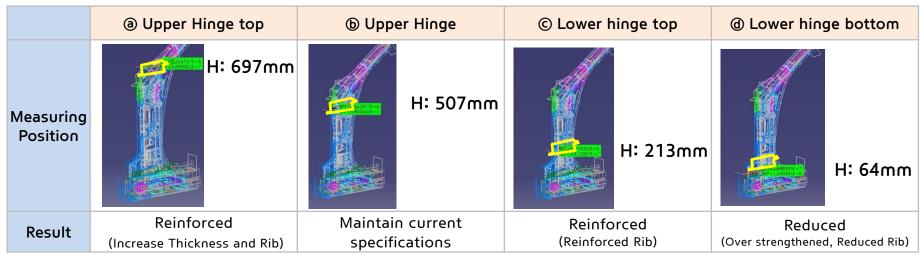
■ Analysis of High degree Vacuum Die Casting Products for Major Vehicle Body

		Material for high degree vacuum die casting (RHEINFELDEN, Germany)								
		Silafont36			Magsimal59			Castasil37		
Charact eristic	 Heat treatment material (T6) Patent Expiration Implementation of various mechanical properties by heat treatment High casting performance (Min. Thicks. 1.5mm) 			Non-Heat treatPatent not expinVery good dynaHigh casting per	red mic properties (fa	-	 Non-Heat treatment material Patent not expired Short aging, high dimensional stability High casting performance (Min. Thicks. 1.5mm) 			
Property	Yield Strength (MPa)	Tensile (MPa)	Elongation (%)	Yield Strength (MPa)	Tensile (MPa)	Elongation (%)	Yield Strength (MPa)	Tensile (MPa)	Elongation (%)	
, ,	210~280	290~340	7~12%	160~220	210~340	12~18%	120~150	260~300	10~14%	
Applica ion cases in oversea s		ass Sub Frame BMM Side	z z 8 Door	AUDI A4 Sid	VW / Porsch Control Arm	H	Jaguar X	K Hinge, Door Pannel		
Result	Using silafo	 Using silafont36 - Mechanical properties of three cases are similar. It has cost advantage because of patent expiration. 								

Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting

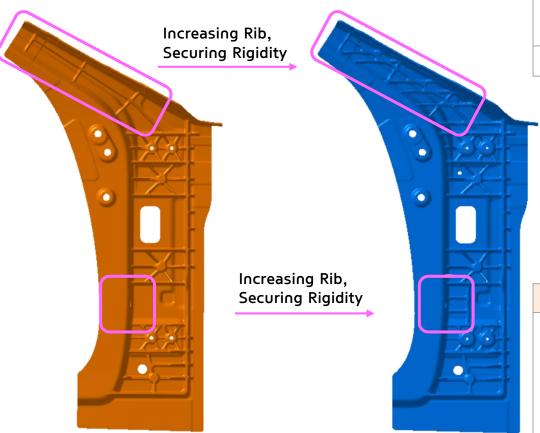

Design Concept

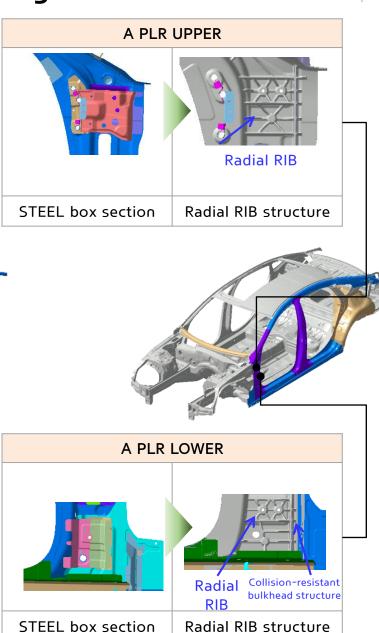

	Current Specifications		Concept 1 (OTR:AL D/C+PIPE)		Concept 2 (OTR:AL D/C)		Concept 3 (OTR:AL D/C+INR)
Concept Drawing			Die Casting Pipe welding		Steel Bracket Die Casting (Low Rib structure)	Die Casting (High Rib structure)	
Weight (kg)	19.3kg		14.9kg -4.4kg (-23%)	17.1kg -2.2kg (-11.4%)			13.9kg -5.4kg (-28%)
No. of Parts/Unit	36		22 (-14)	28 (-8)		16 (-20)	
Lightweight effect		2	Effect : Low	1	Effect : Middle	3	Effect : High
COST	Reference	-3	Increasing cost compared to steel body	-2	Increasing cost compared to steel body	-2	Increasing cost compared to steel body
NO. of Parts	(Points: $-3 \leftarrow 0 \rightarrow 3$)	2	Add additional pipe	1	Integrated die casting structure	3	Reduce additional parts
Assembly/ Productivity		-2	Add assembly process by adding pipe	-1	Disadvantage with adding mechanical coupling	-1	Disadvantage with adding mechanical coupling
	TOTAL	-1	Disadvantage with Lightweight effect and number of parts	-1	Low Lightweight effect	3	Optimal agenda with Lightweight effect and cost

Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting

■ Product Design: Geometrical moment of inertia

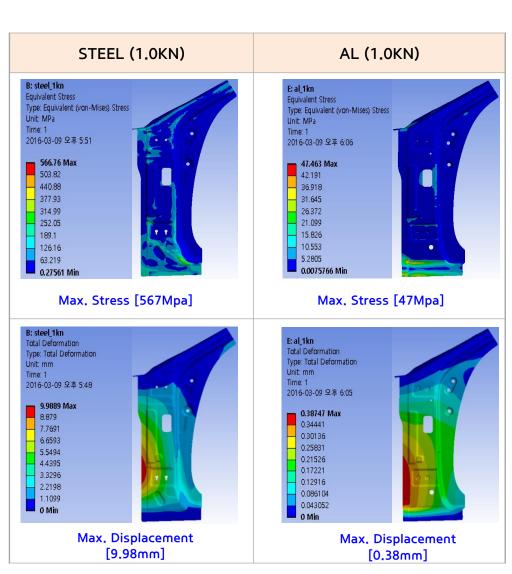




Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting

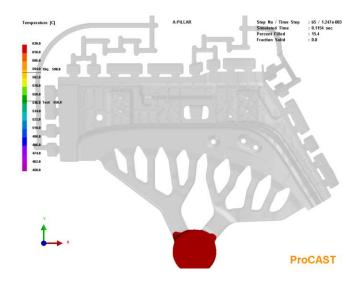
■ Product Design: : Change Rib structure

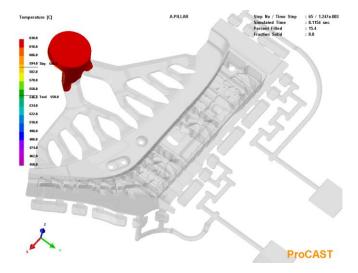


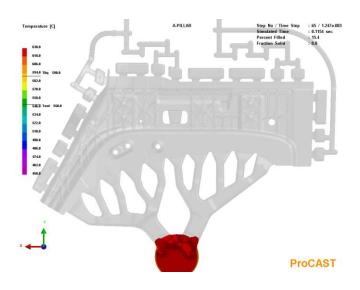
Development of Vehicle Weight Reduction

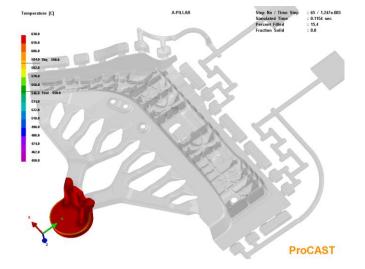
Aluminum Alloy for Die Casting

Stiffness Analysis


• Stiffness Analysis	
STEEL	AL
FE Modeling	FE Modeling
Node No.: 205,271Element No.: 103,506	Node No. : 355,397Element No. : 196,260
 Distributed load (-z Direction) Boundary condition (2 sections) 	 Distributed load (-z Direction) Boundary condition (2 sections)




Development of Vehicle Weight Reduction


Aluminum Alloy for Die Casting

■ Flow Analysis

Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting

■ Material Development

Dissolution & GBF Treatment

Dissolution	3 to	Ladle Dissolution	
	1 st T/O	5 min.	N ₂ Gas
GBF	Resting	10 min.	-
	2 nd T/O	10 min.	Ar Gas

Molten metal Correction Analysis

- Wave front Analysis using K-MOLD

Grade	K Value	Result				
Α	0.16 (1/6)	ОК				
Below Grade C (1.0~2.0), retreatment						
needed						

 Cleanliness analysis by Decompression Solidification method

		1 st T/O	Resting	2 nd T/O
D.I Va	alue	3.13	1.20	1.63

D.I Value: 0 ~ 3.0 (Excellent cleanliness)

Ingredient Analysis

Ingredient	Си	Si	Mg	Zn	Fe	Mn	Ti	Sr
SPEC (silafont36)	0.03↓	9.50~11.50	0.10~0.50	0.08↓	0.15↓	0.50~0.80	0.04~0.15	0.01~0.02
Holding furnace 1st T/O	0.25	10.1	0.41	0.08	0.11	0.563	0.058	0.014
Holding furnace 2 nd T/O	0.25	10.2	0.392	0.11	0.12	0.56	0.058	0.013
Holding furnace 3 rd T/O	0.376	10.2	0.38	0.137	0.15	0.516	0.057	0.015
ADC12	1.50~3.50	9.6~12.0	0.3↓	1↓	1.3↓	0.50↓	0.30↓	-

Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting

■ Production of Prototype

- Dissolving material

- Input in to Holding furnace

- Mold Mounting, Equipment Setup

- Washing Process

- Molding

- Mold cleaning & Operating Heater

Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting

Casting Condition

Casting Condition

Condition	Metal pressure (Mpa)	Low Speed (m/s)	High Speed (m/s)	High Speed Section (mm)	GATE Sectional area (mm^2)	GATE Passing speed (m/s)	Filling Rate (%)	
A PILLAR	60	0.48	2.2	200	1289.2	23.68	34.20	

- Sleeve Diameter (130mm), 슬리브 Length (1,030mm)

Condition	Furnace Temperature (°C)	Mold Heater(℃)	Mold Temperature (Fixed)	Mold Temperature (Operating)	Vacuum Position (mm)	Vacuum Time (Sec)	Vacuum Degree (mmHg)	DIE TiME(Sec.)	Cycle time
A PILLAR	660	135 (Fixed) 180 (Operating)	Refers	below	450	5	150	13	70

Temperature Condition

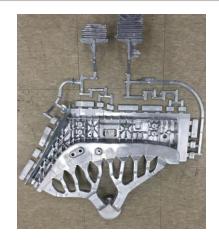
Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting

■ T/O Result

C	a	s	t	i	า	ç
	D) [at	:	2	

- 2016. 08. 16 Samkee Automotive (Seosan Factory 2250-5), Applied Material: Silafont36

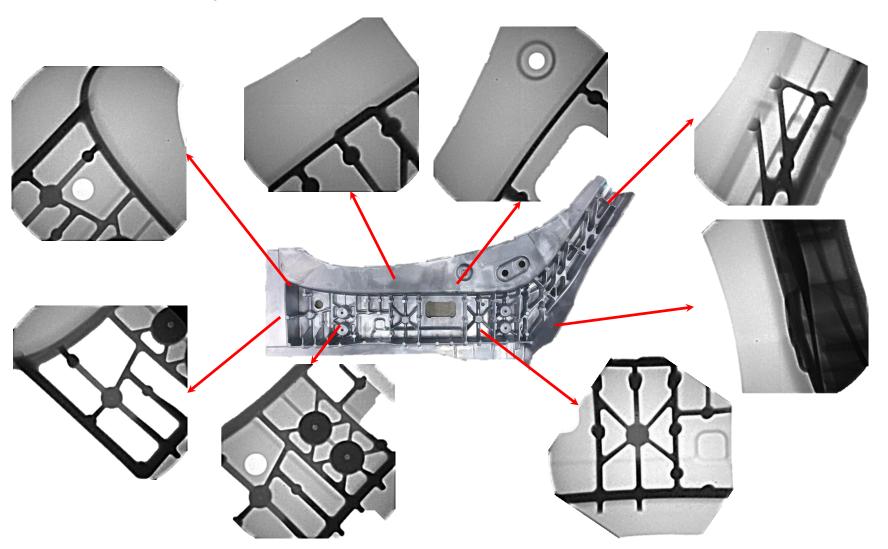

Weight

Product	Injection weight (g)	Material weight (g)	
A PILLAR	11,206	4,522	

Injection Condition

Product	Temperature (°C)	Low (m/s)	High (m/s)
A PILLAR	660	0.48	2.2

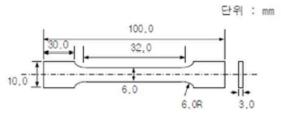
Casting Result


Conclusion

- Ingredient Inconsistency due to mixing with ADC12 residue in the furnace $(Cu 0.03 \rightarrow 0.376, Zn 0.08 \rightarrow 0.137 : Spec over)$
- Mg Additional input (Actual value 0.380 wt%)

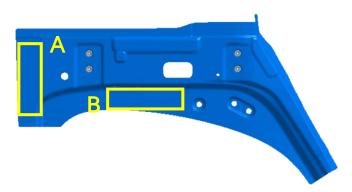
Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting


■ Test evaluation: X-ray measurement

Development of Vehicle Weight Reduction

Aluminum Alloy for Die Casting


■ Test evaluation: Tensile test

〈인장시편 형상: ASTM E8M〉

- Tensile Test

Test Result

Sample No.	Yield Strength (MPa)	Tensile strength (MPa)	Max. displacement (mm)	Elongation (%)
1차 T/O A	153.56	277.14	1.96	6.1
1차 T/O B	307.03	307.03	1.85	5.8
2차 T/O A	248.82	296.94	2.01	6.3
2차 T/O B	264.60	320.16	2.81	8.8
3차 T/O A	237.43	297.43	2.34	7.3
3차 T/O B	260.77	304.87	1.77	5.5
4차 T/O A	176.24	273.81	2.00	6.3
4차 T/O B	231.37	331.04	2.45	7.7

"

Leaping forward to become the world's No.1

Automotive parts company by 2020!

77

Importance the human and environment, will continuously
Put effort to become a first class global enterprise

Thank you h

To Be the BEST In the World!