

AMRC Composite Centre

Capability directory

The AMRC Composite Centre extends the AMRC's expertise in metals production into the new generation of carbon fibre composite materials.

The Composite Centre facility includes a general workshop and 900 sq m of high-spec clean rooms. It houses a range of state-of-the-art design, development and processing equipment and as part of AMRC we also have access to the wide range of machining centres in the main Factory of the Future workshop, and the specialist services and resources of the other AMRC research groups.

Composite materials are increasingly used in aerospace, marine, automotive and other high-value industries for their combination of light weight and high strength. But they also present a host of manufacturing challenges.

Our research focuses on the production and machining of composite components, including hybrid parts which combine high-performance metals and composites in a single structure. Such structures can

provide significant weight savings while maintaining the highest material and structural performance, offering improved fuel efficiency for aerospace and other transport applications.

Our main research area themes are:

- Automated production
- Machining
- Advanced curing
- Novel materials and processing
- Dry fibre technologies

The AMRC Composite Centre is a member of the Composites at Sheffield partnership.

Contact **compositecentre@amrc.co.uk** for further information.

Click page to jump

Our technology streams develop the techniques and underpinning science that can deliver significant improvements in engineering performance, including:

Automated Production	page 5
Advanced Curing	page 6
Novel Materials & Processing	page 7
Dry Fibre Technologies	page 8
Composites Machining	page 9

Equipment

Our core composite manufacturing equipment, mostly housed in the AMRC Factory of the Future:

Automated Composite Manufacture

Automated Dynamics AFP	page 10
Robotic Filament Winding - MFTech	page 11
Expert Robotic Pick and Place Cell	page 12
Advanced Curing	
Vötsch Microwave Chamber	page 13
Rhodes 10MN Hot Press	page 14
Langzauner Hot Press	page 15
Krauss Maffei HP RTM Machine	page 16
Isojet 2000 RTM Machine	page 16
LBBC Autoclaves	page 17
Caltherm Curing Oven	page 17

Equipment index continues on next page...

Click page to jump

...continued.

Dry Fibre Technology	
Rapier Weaving Loom	page 18
Herzog Radial Braiding	page 19
Jacquard 3D Weaving Loom	page 20
EAT Jacquard Weaving Design Software	page 21
Robotic Stitching and Trimming	page 22
- Ultrasonic Robotic Trimming	page 23
- Stitching Heads ····	page 24
Tailored Fibre Placement - TFP	page 25
EasyPerm - Permeability testing equipment	page 26
Composite Machining	
Machine Tools	
5-axis Ares & Antares CMS CNC Machining Centres	page 27
5-axis Scharmann Ecospeed	page 28
Doosan Puma SMX3100L Mill-Turn	page 29
DMG Mori 340G linear US-A	page 30
Flow Aquarese AWJ	page 31
6-axis ABB IRB 6660 robot	page 32
• EI KUKA KR 1000 L750 'Titan' robot ·····	page 33
Sensors	
Kistler 9170A RCD	page 34
Alicona InfiniteFocus G5	page 35
• FLIR A655sc	page 36
Romer Absolute arm 8525 with Verisurf	page 37
Photron Fastcam SA-X2 480K M1	page 38
Composite Characterisation	
Characterisation Equipment Suite	page 39

Automated Production

Automated Production

Automation of composite manufacture is key to establishing future high-performance, cost-effective manufacturing solutions.

Working alongside other HVM Catapult's the AMRC utilises automated fibre placement and advanced robotic filament winding to demonstrate to SMEs, and its member companies, the cost and performance benefits of the technologies.

Our key resources include:

Research areas

- Developing in-process monitoring systems that improve system accuracy and reliability.
- Working with material suppliers to develop and evaluate new, process-specific materials.
- Developing software to provide a seamless transition from design to manufacture.

Industrial application and benefit

- Higher performance components resulting in lighter, more economical, designs.
- Improved material utilisation, up to 30% compared to conventional techniques.
- Significantly Increased productivity compared to traditional hand lay-up.

Also of note

The development of automated composite manufacturing technologies at the AMRC has allowed supply chains and SMEs to become involved in large-scale collaborative projects:

- Tinsley Bridge Group.
- UTAS.
- Automated Dynamics.
- TenCate.

This work supports these companies by providing a world-class facility to enable the demonstration of their products and expertise.

Advanced Curing

Advanced Curing

The curing process is key to converting a loose mass of fibres and resin into an advanced engineering composite material.

The curing process applies the energy to cross-link or melt the polymer matrix, and the pressure to consolidate a fibre reinforced composite. Autoclaves are traditionally used to apply this heat and pressure to produce high quality, low void composites. Despite the advantages of autoclaves, there are commercial drivers to use alternative out-of-autoclave (OoA) technologies to attain higher productivity and lower costs.

Advanced curing technologies

The AMRC is pursuing a number of enabling technologies and autoclave alternatives that will reduce costs and energy, whilst enhancing throughput and quality of components.

These include;

- Microwave heating.
- · Hot pressing.
- · Low and high pressure Resin Transfer Moulding (RTM).
- Directly heated tooling.
- In-situ consolidation during AFP.

Industrial application

The different technologies available will be of interest to different sectors of industry.

- Microwave curing is of key interest to the aerospace industry, with the process reducing cycle time and energy consumption without compromising part quality.
- Hot pressing is of great interest to the automotive industry; complex and relatively simple parts can be formed rapidly and accurately.

 For low-to-medium performance components not requiring autoclave pressure, directly heated tooling has great potential across all industry sectors.

Collaboration

- · Directed work for OEMs such as Boeing and BAE Systems.
- Directed and collaborative research into thermoset and thermoplastic hot pressing for aerospace and automotive applications.
- International collaborative project with South Korean partners to investigate fusion bonding technologies for thermoplastic CFRP.
- EPSRC applications with Glyndwr University on microwave curing.
- Horizon 2020 project with the University of Sheffield on Smart Materials.

Novel Materials & Processing

Novel Materials & Processing

The aim of the Novel Materials and Processing stream is to facilitate the development of processes and materials to improve net shape component manufacture and material properties.

The work undertaken by the Novel materials and Processing Technology stream typically falls into the following themes:

Joining

The Joining theme conducts research into the various methodologies for joining components to create assemblies with reduced manufacturing cost, improved joint design and utilisation and reduced qualification cost. Understanding the effect of such things as the influence of the bonding environment, surface preparation and bond thickness are vital for developing efficient, effective and reliable joining methods.

Tooling

The AMRC are undertaking research to develop tooling that is appropriate for a wide range of applications. The perfect tool would be durable, handle-able, low cost, have high temperature capabilities and a good Coefficient of Thermal Expansion (CTE) match with the component material.

The design of a tool can vary depending on its intended use - such as preforming, de-bulking and curing.

The development of 'intelligent' tooling – tools with added or increased functionality such as being reconfigurable or integrating sensors to monitor parameters such as pressure or temperature during cure – is an area of research that has the potential to significantly impact the manufacture of composite components.

Novel Materials

The novel materials theme facilitates the development and deployment of novel materials. The AMRC has a record of delivering successful projects on bio-composites, Metal Matrix Composites and core materials.

Our work on bio-composites has already made an impact on the production of bio-derived composites. Previous collaborations with SHD to develop materials and PES Engineering Ltd and TEKS UK for feasibility studies have given the AMRC strong foundations in this research area.

Simulation

The goal of our research in this area is to provide tools to aid decision making with respect to composite manufacturing through the development of process simulation and life-cycle analysis capabilities.

Being a relatively new field, many manufacturing decisions within the composites industry are made based on experience and opinion rather than science and fact. Often, a trial and error approach is used to find a manufacturing solution. Robust simulation will benefit the field of composites by minimising the use of materials and resources prior to component manufacture.

Dry Fibre Technologies

Dry Fibre Technologies

The manipulation of fibre architecture is key to producing an optimal component with tailored composite component performance.

The AMRC is working with traditional textile technologies, such as weaving and braiding, and pushing their capabilities beyond the conventional standards to produce novel composite fibre architectures.

Recent work includes the recreating of an automotive component - originally created using multiple 2D woven preforms joined together - using one single 3D woven preform.

Research Areas

- Developing new 3D architectures and understanding the mechanical property improvements offered by the new structures.
- · Creating 3D preforms of optimal fibre positioning.
- Creating unitised single piece preforms for maximised fibre continuity.
- Preform infusion / conversion to composite (and intermediary processes).
- Developing software to allow improved 3D structure considerations (including damage response).

Industrial Application and Benefit

The novel preforming processes developed here at the AMRC yield the following benefits:

- · Near net shape preforming.
- Thicker preforms.
- Reduced labour times as a direct result of the above.
- Higher performance components resulting in lighter designs.
- More accurate material deposition, and increased repeatability of composite conversion.

Also of note

The AMRC is well known for assisting supply chains in developing and demonstrating technology. This research theme has enabled this service to be extended to the technical textiles sector.

The AMRC's preforming capabilities have been utilised extensively in the cross-HVMC centre project - LSP.

Novel Materials & Processing

Novel Materials & Processing

The composites machining group provides innovative, state-of-the-art and collaborative solutions to the composite machining community.

We want to make this form of subtractive composite processing affordable, fast and safe so that it is more attractive to machine a high value-add component to net shape than to use any other technology.

Recent works include assessment of CFRP workpiece quality inspection techniques and machinability techniques which have transferred from metallic traditions. These include surface roughness analysis, force measurement and tool micro-geometry inspection techniques. In addition, another project is looking at the effect of coolants on the CFRP machining process, focusing on the tool life impact.

Projects

Assessment of inspection techniques: Investigates 3D aereal texture measurement over typical stylus-based roughness measurement techniques to represent a complex, heterogeneous fibre reinforced polymer surfaces. In addition, this project also undertook to determine the efficacy of enhanced micro geometry in full slot edge trimming operations by investigating the forces in the process.

Wet vs Dry CFRP Machining: A number of different coolant types were used with all other factors in the experiment kept constant. The life of a number of drills was examined with respect to hole quality performance and tool wear criteria.

Industrial application and benefit

As industries such as aerospace, automotive and renewable energy (principally wind) look towards reducing the structural weight of their components, composite materials are growing in demand. Current large scale commercial aircrafts consist of more than 50% composites materials with a typical wing requiring in the region of 5,000 holes and more than 50,000 holes in the entire aircraft.

Also of note

Working with partners on generic projects or with companies on specific work the categories of development fall under:

- · Cutting tool design benchmarking.
- · Damage in composite machining.
- Intelligent workholding.
- Hole generation.
- Edge trimming.
- Stack material investigations.

This work supports these companies by providing a world-class facility to enable the demonstration of their products and expertise.

Automated Composite Manufacture

Automated Dynamics AFP

Machine Specification

- 7 axis system (6 axis robot plus spindle).
- Parts up to 1.2 m diameter, 2.75 m long & 2000 kg.
- 5 heads for different applications:
 - 4 x 1/4" tows of thermoset prepreg or thermoplastic bound "dry fibre".
 - 1 x up to 1" tape of thermoplastic prepreg using laser heating for in situ consolidation.
 - 1 x up to 1" tape of thermoplastic prepreg using hot gas for in situ consolidation.
 - 1x3" tape of thermoset prepreg.
 - 12 x 1/8" tows of thermoset prepreg.
- All tapes/tows are fed and cut independently.
- Add/cut accuracy ±0.5 mm.
- Trajectory repeatability ±0.3 mm.
- Compaction force up to 90 kg (for tack, debulk & consolidation).
- Heating options: laser system, Hereaus Humm3 flash lamp and hot gas torch.
- ADC (native) & Autodesk (3rd party) programming.

Advanced Fibre Placement Research

AFP developed from a combination of technology used for tape placement and filament winding, essentially moving tape placement onto a rotary axis to extend the range of parts which could be manufactured. Robotic AFP systems were developed in the last 10 to 15 years as a higher flexibility, lower cost solution compared to traditional machine tool setups and are now becoming more common place in the UK supply chain.

Much of the research at AMRC has focused on building a deep understanding of the process, from the programming through to the final product, with a combination of experimentation & demonstration on industrial scale components.

The key areas are:

- Part geometry & design for manufacture.
- Key data for programming & materials database.
- Defect characterisation (gaps, overlaps, wrinkles etc.).
- Effect of process parameters on quality & properties.
- Heating systems for tack control.
- Structural analysis of 'as deposited' structure.
- Models for selection of placement strategy.
- Innovative tooling.
- Smart structure design (ability to steer fibres to give unique structural stiffness).

Automated Composite Manufacture

High Tension Filament Winding - MF Tech

Machine specification

- 9 axis system (6 axis robot, spindle, rotating eye and material feed for AFP head)
- · 2 end effector configurations
- · Config 1 Standard filament winding end effector
- · Config 2 Automated Fibre Placement (AFP) end effector
- Motorised headstock/slave chuck system
- Handle tool sizes from 5mm 1500mm dimeter and 100mm – 4000mm in length
- · Tool weights up to 2000kg+
- Spindle speeds of up to 250rpm <100mm diameter -100rpm for 100mm > diameter
- - 4 tows, from 3k 50k (tows) or 0.125" 0.5" (pre-preg)
- · High tension system up to 180N (±2N) per tow
- Integrated IR lamps for dynamic heating of pre-preg systems
- Heraeus Xenon system for processing thermoplastic materials
- Shrink/stretch tape application
- Mandrel inflation system for Type IV vessel manufacture
- · Spray binder application for constraining dry fibre systems
- · Mandrel over tension system
- Capable of winding flat, spar, non-axisymmetric and multi-axis parts.
- Integrated data logging system (tension, temp, axis positon, spindle speed, etc)
- COMPOSICAD and Cadfil programming pipe, vessel, axisymmetric, spar, curve & tee.

Background and projects

Following on from the introduction of the AMRC's existing filament winding machine commissioned back in 2013, the AMRC have now added the latest iteration of MF Tech robotic system to their capability which was commissioned in April 2019.

The high tension system exhibits many new capabilities, namely the ability to wind at nearly twice the tension of the previous machine, this benefits part manufacture such as the over winding of electric rotor magnets and composite flywheel solutions. The other stand out capability is the introduction of the automated fibre placement end effector, this allows the ability to deposit true 0° plies within a typical filament layup, something that cannot be done without huge complexity within a traditional filament winding setup. It also brings the capability of producing multi axis flat panels.

Other notable capabilities include the ability to stabilise dry fibre with an integrated binder application system, a mandrel inflation system for pressurising polymer tools when winding Type IV pressure vessels and a mandrel over tension system for applying high tensions to the mandrel to avoid deflection and retain concentricity when winding with high tensions on thin mandrels. With the integration of the Heraeus Noble Light System we also have the capability for in situ processing of thermoplastic materials.

Automated Composite Manufacture

Expert Robotic Pick and Place Cell

Cell Features:

- ABB 6-axis robot
- Automated tool changer and storage posts for 2 end-effectors
- Pneumatic drawer system for ply storage
- · Assyst Bullmer CNC ply cutter can load plies into cell

Robotics:	AAB IRB 6640
Handling:	1 small and 1 large Vacuum Gripper with electrically driven needle grips
Storage:	Eight Pneumatic driven Drawer Material storage unit
Other:	MK Belt Conveyor Item Assembly table

Gripping capability:

- · Needle grippers (pneumatic and electric)
- · Coanda (high flow vacuum) grippers
- Bernoulli (non-contact) grippers
- Matrix gripper

Microwave Curing Systems

Microwave curing technology can hold significant benefits over conventional methods when applied to composite structures. These benefits include reduction in cycle times and manufacturing space, as well as improvement in energy efficiency.

AMRC have two microwave systems: Vötsch industrial and Panasonic test bed. The Vötsch microwave operates at a frequency of 2.45GHz and consists of 24 magnetrons (21kW power). Located within the ceiling of the cavity are two infrared cameras to view the heat distribution of a composite within the whole chamber.

Machine Type:	Vötsch Microwave Chamber
Specification:	24 magnetrons @ 2.45 GHz, 900w x 24 = 21kW
Internal Dimensions:	1.8m x 1.5m x 2.1m
Temperature Monitoring:	K-Type Thermocouples Fibre Optic Thermocouples (up to 450°C) Optris IR Cameras
Safety Systems:	FOT's and IR cameras integrated into control system Fire suppression unit
Other:	Microwave compatible vacuum system

The test bed is based off a 1kW Panasonic domestic microwave and its bespoke feature is the novel control system. The system can be operated using one of five intelligent control algorithms to explore the full potential of high speed curing.

Areas of research include: material characterisation (absorbing, transparent and reflective materials), processing of thermoset and high temperature thermoplastic composites, modelling of the microwave chamber, cure optimisation of a prepreg material, equipment development and tooling materials.

Machine Type:	Panasonic Retrofitted test bed
Specification:	1 magnetron, 2.45 GHz, 1000W
Internal Dimensions:	354 mm x 343 mm x 205 mm
Temperature Monitoring:	Fibre Optic Thermocouples (up to 450°C)
Other:	Microwave compatible vacuum system

Rhodes Group Hot Press

1000 tonne press – designed to be used for HP-RTM, Gap-RTM, Pre-Pregs, Compression-RTM, Moulding of Thermoplastics and Thermosets.

- · Rear mounted, lower shuttle table for tool loading
- Heating system up to a maximum temperature of 290°C
- 1000 tonne achieved by eight 250 mm/180 mm diameter double acting main rams
- Tool area ranging from a minimum of 975 F/B x 1075 L/R up to 3300 F/B x 2300 L/R
- 1800 mm open daylight and 500 mm closed daylight
- Operating speeds: Rapid approach 38 mm/sec, press up to 255 Bar up to 2.5 mm/sec (variable) and return 40 mm/sec

Machine Type:	Rhodes Group Hot Press
Envelope:	Bed: 2800mm x 2300mm Stroke: 1200mm
Load:	10MN
Max Temperature:	280°C
Rapid Travel Speed:	150mm/s
Pressing Speed:	2mm/s
Control System:	Siemens

Langzauner Hot Press

Machine Type:	Langzauner Heated Press
Envelope:	Bed 1500mm x 1000mm Stroke 700mm
Load:	320 tonne giving 20 bar over full platen face
Max Temperature:	390°C
Ramp Rates:	Heating 5°C / min Cooling 5°C / min
Heating Power:	72kW
Rapid Travel Speed:	100mm / s
Pressing Speed:	0-14mm / s

RTM Machines

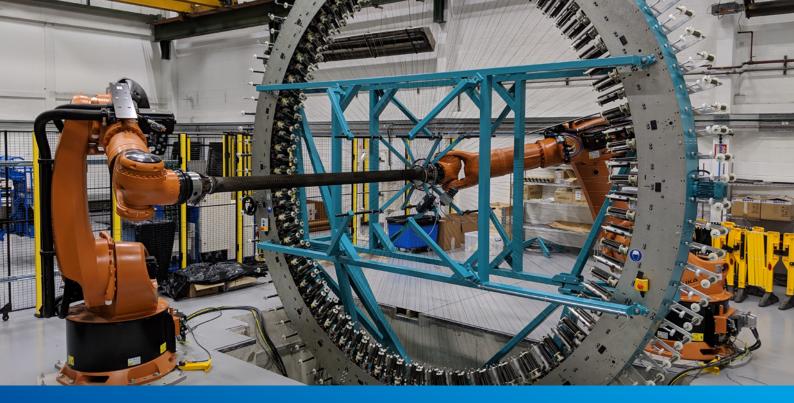
Machine Type:	Krauss Maffei HP RTM
Capacity:	100kg
Max Pressure:	200bar
Temperature:	130°C
Max Flow Rate: (2 machines in parallel)	24kg/min
Injection heads:	4
Other:	Exotherm quench system Fully intergrated with Rhodes press

Machine Type:	Isojet RTM system
Capacity:	10 litres
Max Pressure:	7 bar
Temperature:	120°C
Additional Features:	Vacuum system, two part resin systems Flow or pressure control

Autoclaves & Curing Oven

Machine Types:	LBBC Autoclaves
Volume:	a) 3000mm diameter x 5000mm long b) 1000mm diameter x 2000mm long
Temperature:	а) 210°C b) 400°C
Pressure:	a) 10 bar b) 20 bar
Power:	a) 60kW b) 180kW
Atmosphere:	Nitrogen

Machine Type:	Caltherm Curing Oven
Volume:	3000mm x 3000mm x 3000mm
Temperature:	210°C
Power:	95kW
Atmosphere:	Air



Rapier Weaving Loom

- · Loom capable of weaving 2D & 3D preform cross sections
- These structures are important for introducing damage resistance and tolerance
- · Customize architectures, use multiple (hybrid) fibres etc.
- 20 weaving shafts
- 4 colour weft
- · Carbon fibre processing capable
- · High Speed Double Rapier with positive fibre transfer
- 1.5M weaving width

Туре	Fast Technology Rapier Weaving Loom	
Fibres	Carbon, Glass, Kevlar, Basalt, Alumina	
Fibre count/tow size	1K – 24K	
Fabric architecture	Single-layer, Multi-layer, Cellular – converted to 3D structures	
Fabric width	1000mm (nominal), 800mm (minimum) 1400mm (maximum)	
Shedding system	Dobby	
Number of Heald frames	28	
Weaving speed	Up to 300 pics/minute	
Pick density	Variable – depending upon fibre count	
Weft feed	4 colours (weft insertions) available. Possible to insert multiple wefts. Potential for metallic weft yarns.	

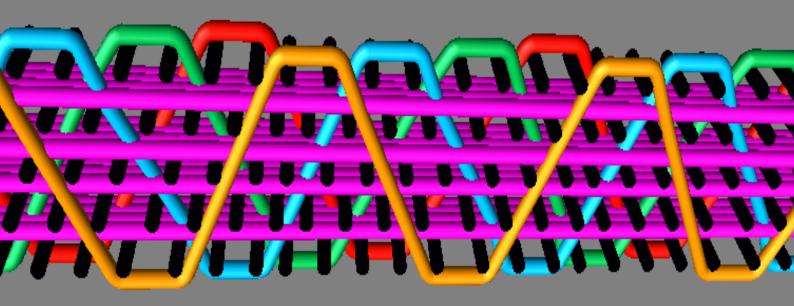
Herzog Radial Braiding

Fabrication of carbon fibre preforms by braiding technique

- Variety of tows can be combined in the axial and braid directions in order to create hybrid materials
- Non-interlaced core materials such as fibre tows, foam materials, metal wires, fibre optics and smart actuating materials can be over braided using the technology
- Ability to form complex shapes is one of the key features of braiding technology
- Radial bobbin configuration for low fibre damage and maximum flexibility on part shape
- Triaxial setup

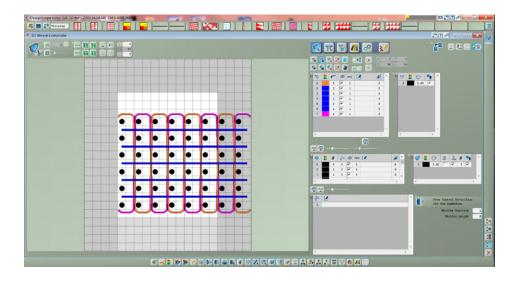
- 192 bias carriers, 96 axial
- Dual robot part manipulation, 6 axis
- Part size up to 2.8m long by 0.7m depending on fibre angle requirement
- Mandrel weight up to 300kg
- · Bias angle from 10 to 80deg
- CF tow size from 3K to 50K
- Carriers for delicate fibres (eg carbon, ceramic etc) and other fibres (eg glass, polymer etc)

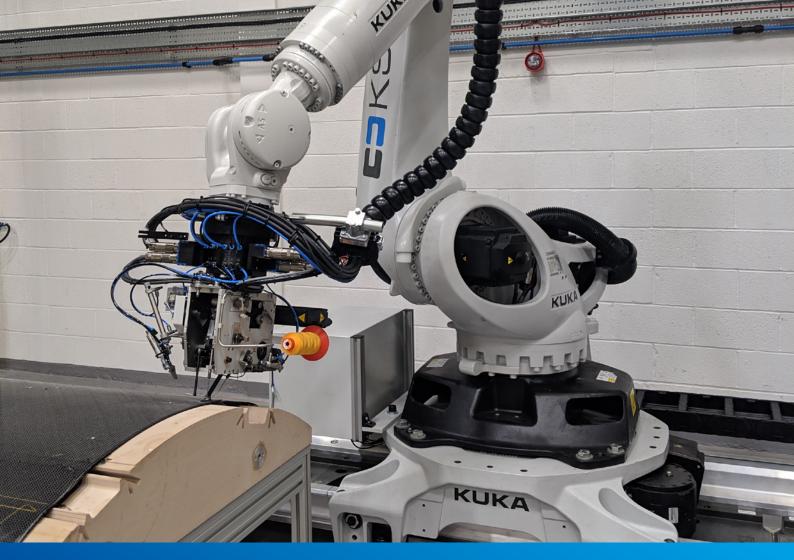
Jacquard 3D Weaving Loom


Complex Jacquard Weaving System. Loom capable of weaving Complex 3D geometries in x, y & z directions.

- State of the Art Staubli Unival Jacquard with independent warp fibre control
- Free selection of system components in terms of warp thread supply, shed formation, weft insertion and fabric take-off
- Flat take up to maintain fibre orientation and reduce distortion
- · Unlimited freedom in design
- Production of very dense fabrics over 5cm thickness

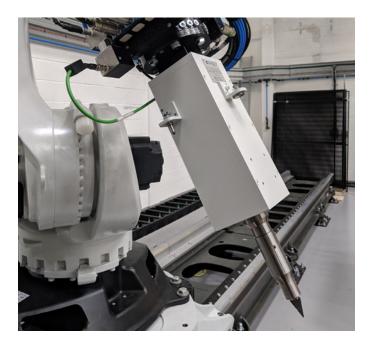
- Warp: 3072 fibres in warp direction supplied by a bobbin creel
- Weft: double-rapier weft insertion system
- Weaving width: ~1 m
- Efficient processing of a wide variety of technical and highly sensitive fibres (e.g. carbon, glass, metallic, aramid etc.)
- Can be optimally adapted to a product-specific requirement (e.g. flat, spacer, complex multi-layer fabrics)




EAT Jacquard Weaving Design Software

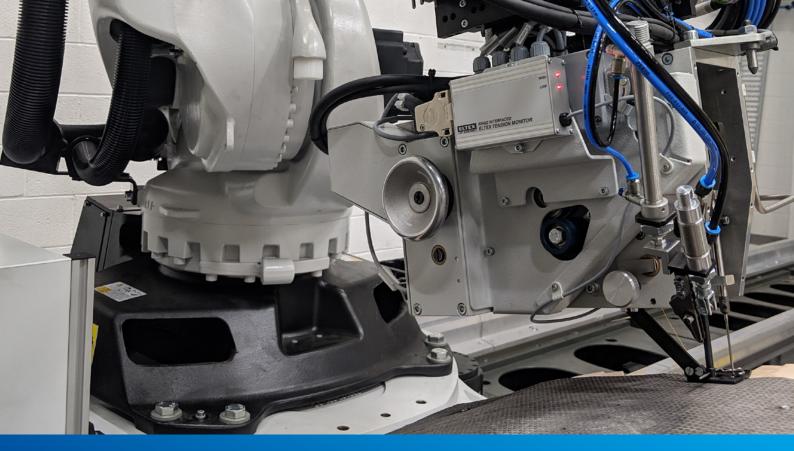
Complex geometries can be created using Weave Design Techniques combined with EAT advanced Design Software.

- Advanced Design Software enables complex Solid structures to be manufactured.
- Infinite number of weave possibilities for optimising fibre paths and creating shapes as well as solid fibre blocks.
- Programming of Unival 100 Jacquard to enable multiple shed geometries and reduce filamentation during fibre processing.
- Simulation illustrating fibre cross sections



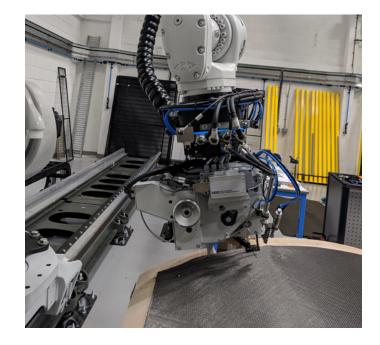
Robotic Stitching and Trimming

- KSL robotic stitching and trimming robot for preform assembly, trimming and through thickness reinforcement
- Working envelope 7m x 3m x 2m.
- · 2 different stitching heads for single side stitching
- Ultrasonic knife for preform trimming
- 7 axis Kuka KR150 robot on a 7 m long track.
- 150Kg payload capability at max reach of 3m.
- Positional accuracy of stitch or trimming +/-0.5mm
- Stitch or trim paths manually taught or programmed with Kuka PRC software



Ultrasonic Robotic Trimming

- · Large ultrasonic trimming knife.
- · Allows 3d trimming of preform edges and details.
- Up to 20mm thick thickness, dependant on material type.
- Up to 20m/min cutting speed, dependant on material type.
- · Can cut dry fabric, un-cured prepreg, nomex honeycomb.



Stitching Heads

- Both stitching heads stitch from one side only, so can stitch much larger structures than would be capable with a conventional sewing machine which needs access from top and bottom.
- Can stitch around 3d geometries, so a wing skin, pressure bulkhead, chassis, etc.
- · Stitching thread can be carbon, Kevlar or polyester.
- · Automatic thread cutting at end of stitch.
- · Stitch tension monitoring available as an add on extra.
- Preform thickness up to 20mm, dependant on stitch thread, preform material, level of compaction, binder type etc.

Tailored Fibre Placement - TFP

Cost-effective Embroidery system

Tailored Fibre Placement (TFP) is a dry fibre manufacturing technology for composite applications which can reduce structural weight by putting fibre only where it is needed.

- TFP use through -thickness reinforcement and stitching to overcome interplay delamination and reduces waste of expensive fibre.
- It can manufacture multiaxial reinforcements of many plies, to many thicknesses, with precise and complex fibre architectures
- Preform dimension: up to 2 × 1.5 m²
- Stitching thickness: up to 5.5 mm
- Automated process permitting complex detailed fibre placement

- Easier material handling
- Creation of net-shape parts
- Customizing shape and fibre orientation
- Placement of continuous tows in any direction by rotating a stationary stitching unit
- Adapted to different fibre types (carbon, glass, Kevlar, thermoplastic towpreg/filament...) and various tow count (1K to 50K)

Fibre placement in all orientation

Layers disposition in all direction

Fast linking

EasyPerm

3D permeability measurement device

Easyperm measures the permeability of a dry reinforcement in-plane (XY Configuration) and through thickness (z Configuration)

- The only industrial solution to simulate the capacity of reinforcement to be impregnated by a liquid resin.
- Adapted to all types of fibre (carbon, glass, aramid, flax, hemp etc.)
- 6 pressure sensors granting the acquisition of permeability values in different positions

Composite Machining – Machine Tools

> 5-axis CMS Ares and Antares CNC Machining Centres

Machine Type:	5-Axis Ares CMS CNC Machining Centre
Envelope:	X-Axis 4800mm Y-Axis 1800mm Z-Axis 1200mm
Power:	12kW
RPM:	24,000
Coolant:	MQL or dry cutting with extraction system

Machine Type:	5-Axis Antares CMS CNC Machining Centre
Envelope:	X-Axis 2600mm Y-Axis 1500mm Z-Axis 1200mm
Power:	12kW
RPM:	24,000
Coolant:	MQL or dry cutting with extraction system

Additional supporting equipment

- Kistler 9129AA plate dynomometer with base plate and holder for lathe and machine base use.
- · Kistler 9170A Rotating components dynamometer.
- FLIR A655sc Infrared thermal imaging camera.
- · Photron FastCam SA-X2 High Speed Camera.

Composite Machining – Machine Tools

Scharmann Ecospeed

The Ecospeed is designed for high-speed five-axis machining of monolithic aluminium and composite aerostructures.

It features the Z3 parallel kinematic head, which can follow any path within a conical working envelope of ±40°, mounted on a column with 3.8 metre X and 2.5 metre Y-axis travel. Our machine is also specified for wet cutting of carbon fibre composites.

Machining envelope	Size: 3800mm x 2500mm x 670mm (horizontal) / 370mm (±40°) Max. table load: 3000kg Parallel kinematics
Cutting fluid delivery	High pressure coolant (HPC) through-tool Minimum quantity lubrication (MQL)
High-speed spindle	Power: 120 kW (S1) Torque: 83 Nm Max. RPM: 30,000 Synchronous
HSK-A tool connection	Maximum rigidity 63 diameter Capable of accepting E-type Max. acceleration A/B axes: 685°/s² Max. jerk move: 50 m/s²
Controller: Siemens 840D	CAD/CAM interactive Toolkit for control & compensation MPC mach, protect, control

Composite Machining – Machine Tools

Doosan Puma SMX3100L Mill-Turn

The Puma SMX Series is a multi-tasking mill-turn machine, integrating the capabilities of a vertical machining center and horizontal turning center into one platform.

Machining capacity	 Swing over bed / saddle & max. machining diameter: 630mm (X axis), 2585(Z axis) +-150mm (y axis), +-120 degrees (B axis), 360 degrees (C Axis) Max. workpiece / turning dimensions: 660 mm X 2540 mm 102mm Bar working diameter
Cutting fluid delivery	• Through-tool coolant: 20 Bar • Flood delivery
Turning spindle	Spindle nose: A2#11Power: 25kW (cont. / 30min rate)Max. speed: 3000 rpmMax. torque: 1203 Nm
Milling spindle	Power: 15 kWMax. speed: 12,000 rpmInterface: HSK 63 A
Controller	Siemens 840D SL (TBC)
Accuracy	 X / Y / Z / axis – positioning: 0.02 mm Repeatability: 0.01 mm B / Z axis positioning: 0.0067 deg Repeatability: 0.0045 deg
Wet / Dry configuration	CFRP machining ready in both wet and dry environments with added air curtains and dust extraction unit

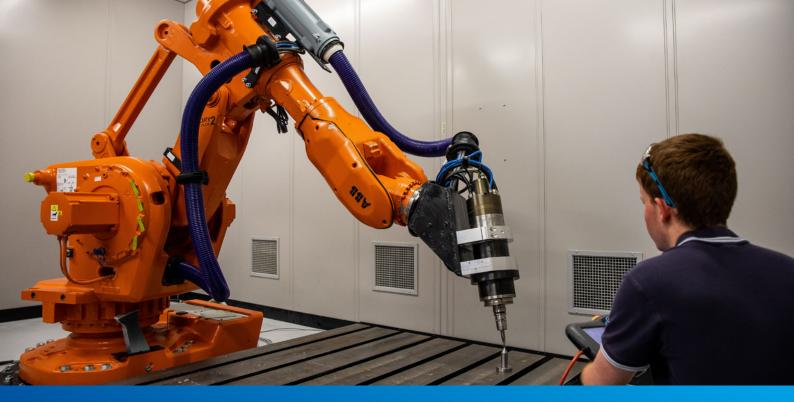
Composite Machining – Machine Tools

DMG Mori 340G linear US-A

Dynamic machining of large workpieces

Platform	Machining envelope X: 3400 mm Y: 2800 mm Z: 1250 mm B: 0° to +210° C: 0 ° to 360 ° Cutting fluid delivery
High-speed spindle	Power: 35kWMax. RPM: 20,000Torque: 135 NmSynchronous typeYRT 325 bearing
HSK-A tool connection	Maximum rigidity 63 diameter
Ultrasonic assisted machining	 Sauer Vs: 17 kHz to 30 kHz with up to 15 µm amplitude Wireless energy transmission Adaptive parameter tuning

Controller: Siemens 840D SL Op. + CELOS	CAD/CAM interactive 3D quickset Toolkit for control & compensation MPC mach. protect. control OMATIVE adv. adapt. Control CELOS visualisation of US-A
Linear drives	 High Kv-Factor: 3-5 m/mm*min Acceleration: 3 m/s² Jerk: 30 m/s³ Drive stiffness: theoretically ∞
Renishaw probing	• Type PP60 optical



Composite Machining – Machine Tools

Flow Aquarese AWJ

Ultrahigh-pressure abrasive waterjet cutting and machining.

6-axis Staubli TX200 robot	 Extended tilting angle of the tool (±100°) and an extended Z travel (900 mm) Max. reach: 2,194 mm Max. payload: 130 kg Position/path repeatability: 0.06 mm Net working area (2D cutting): 1000 x 2000 mm
FLOW PASER® 4 Cutting Head	 Pressure range: 1,200 to 6,500 bar (10 to 94 kpsi) provided by Hyper jet 94i -D 100 hp Manual flowrate control by metering disc
Abrasive supply system	System of Abrasive Management (SAM) 200 kg2 Tm bulk hopper
Controller:	Staubli CS8C HP AquaCAM3D software for path generation and probing Tool-radius compensation Automatic cutting program generation Cutting program simulation with cycle time estimation Human-Machine Interface (HMI): Beckhoff PC with the Aquarese machine interface and Windows 7 Pro Mobile robotic control pendant to move the axes in jog mode

Composite Machining – Machine Tools

> 6-axis ABB IRB 6660 robot

The IRB 6660 is an extremely reliable robot designed for high performance applications.

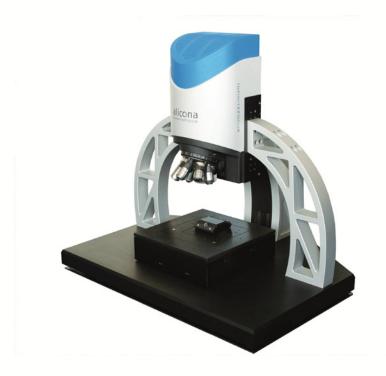
Machining envelope	Max. reach: 3100 mmMax payload: 205 kgRepeatability: 0.07 – 0.11 mm
External laser probing/ alignment	• Leica T-Scan
High-speed spindle	 Peron PS TCV-1-SP Power: 15 kW Max. torque: 14 Nm @0-10000 rpm, 6 Nm @ 10000-24000 rpm Max. RPM: 24000
HSK-A tool connection	• 50 diameter • High-speed low torque applications
Controller	IRC5 with FlexPendant • High-level RAPID programming language • RobotWare software • PROFIBUS DP interface board • AC500 integrated PLC

Composite Machining – Machine Tools

> KUKA KR 1000 L750 'Titan' robot

The KR 1000 Titan LR750 is a heavy-duty 6-axis robot capable of bridging distances of up 7.5 m and handling payloads of up to 750 kg. Titan is used as part of the Accurate Robotic Machining System (A.R.M.S.), built as collaboration with the AMRC, ElectroImpact, Siemens, Renishaw and funded by Innovate UK.

Machining envelope	 Max. reach: 3601 mm Max payload: 750 kg Accuracy: ±0.2 mm throughout the majority of the working volume Retrofitted Renishaw encoders in joints for enhanced repeatability Renishaw probe
High-speed spindle	• GMN HCS 280 – 18000 / 60 • Power: 60 kW • Max. torque: 174 Nm • Max. RPM: 18000
HSK-A tool connection	100 diameter Mid-high speed high torque applications
Controller	Siemens 840D • Siemens HT2 remote pendant • CAD/CAM interactive • Toolkit for control & compensation • MPC mach. protect. control



Composite Machining – Sensors

Kistler 9170A RCD

The KR 1000 Titan LR750 is a heavy-duty 6-axis robot capable of bridging distances of up 7.5 m and handling payloads of up to 750 kg. Titan is used as part of the Accurate Robotic Machining System (A.R.M.S.), built as collaboration with the AMRC, ElectroImpact, Siemens, Renishaw and funded by Innovate UK.

Туре	Force sensor
4-components rotating dynamometer	• Max. RPM: 20000 • Measurement range - Fx, Fy: ±5 kN - Fz: ±20 kN - Mz: ±150 Nm • ER32 collet type • Up to Ф20 mm tool shanks
HSK-A tool connection	63 mm diameter (HSK63A)Through-tool fluid delivery capable up to 70 bar

Composite Machining – Sensors

Alicona InfiniteFocus G5

The KR 1000 Titan LR750 is a heavy-duty 6-axis robot capable of bridging distances of up 7.5 m and handling payloads of up to 750 kg. Titan is used as part of the Accurate Robotic Machining System (A.R.M.S.), built as collaboration with the AMRC, ElectroImpact, Siemens, Renishaw and funded by Innovate UK.

Туре	Optical Surface Measurements Three-dimensional, non-contact
Measurements	Surface profile and form measurements Areal roughness measurements Cutting edge geometry Tool wear: flank, edge rounding & edge recession
Magnification	• 2.5x, 5x, 20x, 50x, 100x
Resolution	 Vertical 2.3µm – 10nm Min measurable Ra- 0.03 µm Min measurable Sa- 0.015 µm Min measurable radius- 0.1 µm

Composite Machining – Sensors

FLIR A655sc

Туре	• Infra-red camera
2 measurement ranges	•-40°C to +100°C • +100°C to +650°C
Detector	• Spectral range: 7.5-14.0 µm • Resolution: 640 x 480 • Pitch: 17 µm • Framerate: - 200 Hz @ 640 x 120 - 100 Hz @ 640 x 240 - 50 Hz @ 640 x 480
Interface	Gigabit EthernetUSB (limited to 25 Hz framerate)
Optics	 24.6 mm focal length Field of view (FOV): 15 ° x11.3° F number: f/1.0 Spectral band: 7.5-14 µm Optional macro lens: FOV: 64x48 mm F number: f/1.0 Spectral: 7.5-14 µm

Composite Machining – Sensors

Romer Absolute arm 8525 with Verisurf

Specifications	 7 Axis 2.5m reach with a scanning laser head and touch probe capability Absolute Encoders and SMART Sensors
Interface	 Laser Scanner with point acquisition rate of 750,000 points with a resolution of 48 microns Ruby Touch probe with accuracy of 12 microns
Software specifications	 Ability to calculate Local Waviness Catia based Plug-in that can create and use model based definitions (MBD) Reverse engineer of parts from real life to CAD solids not just STL.

Composite Machining – Sensors

Photron Fastcam SA-X2 480K M1

Туре	High-speed camera
1 Megapixel CMOS sensor	 Resolution/framerate 1024 x 1024 pixels at 12,500fps 1024 x 1000 pixels at 13,500fps 768 x 768 pixels at 22,500fps 512 x 512 pixels at 45,000fps 512 x 376 pixels at 60,000fps 256 x 280 pixels at 120,000fps Max. framerate: 480000 fps 64GB internal memory
Interface	Remote computer control via high-speed dual port Gigabit Ethernet
Triggering	 Programmable delay on selected input and output triggers, 100ns resolution Start, end, center, manual, random, random reset, Random center, random manual, image Trigger
Optics	Interchangeable Nikon F-mount

Composite Characterisation

Characterisation Equipment Suite

AMRC Composite Centre offers an extensive range of analysis equipment for the characterisation of composites and their constituent materials.

A state-of-the-art thermal analysis laboratory is equipped with differential scanning calorimetric, thermal mechanical, thermo-gravimetric, reaction systems, density and rheometric analysis equipment, allowing the investigation of reaction kinetics, degree of cure, glass transition temperature, volume fraction, porosity and viscoelastic properties.

Perkin Elmer DSC 4000 – Differential scanning calorimetry	Records heat flow over a sample, allowing for cure analysis and heat capacity measurements.
Perkin Elmer DMA 8000 – Dynamic mechanical analysis	Dynamically loads a sample over a temperature range to find its viscoelastic properties.
Perkin Elmer TGA 8000 – Thermo-gravimetric analysis	Allows for weight fractions of samples to be found by burning off during the weighing process
TA DHR-1 Rheometer – Rheometric analysis	Measures the viscosity of a material between two plates, allowing for cure and gel times and viscoelastic response to be investigated
Perkin Elmer Spectrum 2 FTIR – Infrared spectroscopy	Identifies material constituents by comparing infrared spectra reflected off samples.
Anton Paar Multiwave Pro – Microwave acid digestion	Microwave heating assisted acid burn off method to find volume fraction of samples
SNOL Laboratory Furnace – Furnace burn off	Furnace burn off method to find volume fraction of samples
Micromeretics Accupyc 1340 - Pycnometry	Uses nitrogen gas displacement to measure volume and density of materials.
HotDisk TPS2500 S – Dielectric Property testing	Measures thermal conductivity, diffusivity and volumetric specific heat of materials.
Cark Zeiss LSM 800 – Confocal laser scanning microscopy	Laser scanning microscopy allows for precise 3D imaging of material surfaces.

AMRC

AMRC

University of Sheffield Advanced Manufacturing Park Wallis Way, Catcliffe Rotherham, S60 5TZ

e: compositecentre@amrc.co.uk t: +44 (0)114 222 1747 w: amrc.co.uk

